Rational Utilization of Fine Unclassified Tailings and Activated Blast Furnace Slag with High Calcium
نویسندگان
چکیده
The utilization of cemented tailings/paste backfill (CPB) by the mining industry is becoming increasingly important. However, it has been difficult to analyze the economic usage of CPB for fine unclassified tailings. Therefore, the physical and chemical properties of fine unclassified tailings, sampled from the Sijiaying Mine, were first analyzed in this study. After this, active excitation of blast furnace slag was examined, with a cement mixture made up of slag, lime, plaster and cement being used to conduct the physicochemical evaluations and proportioning tests. These results were compared with those from ordinary cement. It was revealed that the cement mixture can effectively harden the unclassified tailings. The cement mixture specimens have good performance in early strength, with the seven-day strength being about twice as high as ordinary cement, which meets the requirements for efficient continuous mining. This strength was reduced after 10 days due to expansion and complicated reactions, with an average reduction of 11.8% after 28 days under recommended and better conditions. In addition, analysis of the microstructures was carried out to observe the hydration products and the change in strength. Furthermore, fluidity characteristics of the slurry were measured, with the slurry found to have a mass fraction of 70%–72% in addition to containing an ideal fluidity and a paste-like flow state. Considering the mining conditions, the aggregates with a tailings-cement ratio of 6:1 and a mass fraction of 70%–72% are recommended as high-strength CPB, which should be used for the surface layer and safety pillars. In addition, backfilling materials with a tailings-cement ratio of 15:1 and a mass fraction of 70%–72% are recommended as low-strength CPB, which should be used as ordinary CPB to achieve economic benefits. The application cases showed that the cement mixture is suitable for utilization of unclassified tailings with regards to safety, economics and efficiency.
منابع مشابه
Influence of Mechanically Activated Electric Arc Furnace Slag on Compressive Strength of Mortars Incorporating Curing Moisture and Temperature Effects
In this study, the influence of mechanically activated electric arc furnace slag (EAFS) was investigated through compressive strength tests on 50 mm mortar cubes. The objective was to convert the wasteful EAFS into a useful binding material to reduce the cement content in concrete without compromising strength and economy. Four different groups of mortar were cast which include control mortar, ...
متن کاملExperimental Studies on Soil Stabilization Using Fine and Coarse GGBS
In developing country like India due to the remarkable development in road infrastructure, Soil stabilization has become the major issue in construction activity. Stabilization is an unavoidable for the purpose of highway and runway construction, stabilization denotes improvement in both strength and durability which are related to performance. Stabilization is a method of processing available ...
متن کاملStrength Development and Hydration Behavior of Self-Activation of Commercial Ground Granulated Blast-Furnace Slag Mixed with Purified Water
In this study, ground granulated blast-furnace slag (GGBFS) samples from Singapore, Korea, and the United Arab Emirates were hydrated with purified water to estimate the cementing capabilities without activators. Raw GGBFS samples and hardened pastes were characterized to provide rational explanations for the strengths and hydration products. The slag characteristics that influenced the best st...
متن کاملElectric Arc Furnace Slag and Blast Furnace Dust, Use for the Manufacture of Asphalt Concrete for Roads
This paper analyzes how feasible it is to use electric arc furnace slag as coarse aggregate, and blast furnace dust as fine aggregate in the manufacture of hot asphalt concrete for roads. Three mixtures were designed using the Ramcodes methodology, the M1 mixture of control with conventional materials, the M2 mixture replacing 50% and the M3 mixture replacing 100% of the conventional aggregates...
متن کاملReduction of Costs of Iron Production by Changing Parameters of the Mixed Blast-furnace Wind
The blast-furnace process consists of a large number of processes that are physicochemical, thermal and mechanical interconnected processes. In addition to main processes consisting of iron oxides reduction, pig iron and slag melt creation, also realised are fuel combustion, gas flow, charge and melt flow, dissociation and other reactions in the solid and liquid phases. Inputs to the blast-furn...
متن کامل